Cet article fait suite à l’article qui se trouve ici, et qui démontre que les anciens avaient déterminés deux mesures que sont la coudée de Nippur (51,84 ± 0,01 cm) et la Coudée Royale (52,36 ± 0,01 cm) pour indiquer leur parfaite connaissance des dimensions de la terre, et le taux d’aplatissement de celle ci.
Ici, je vous propose de constater que les anciens ont aussi pensés la mesure de la coudée royale Égyptienne en fonction de deux phénomènes astronomiques simples. La coudée royale égyptienne est une coudée astro-géodésique terrestre, elle est marquée par les cercles polaires et les tropiques. Les distances qui les séparent des pôles ont été mesurées en coudées royales de manière à lier cette dernière avec le nombre d’or au carré et avec la diagonale d’un carré mesurant une coudée de coté (coudée Rémen).
Le cercle polaire situé à 2618 km du pôle ou 5 000 0000 (5 millions) de coudées :
Les notions de cercle polaire et de tropique servent à marquer des latitudes où se produisent des phénomènes astronomiques qui dépendent de l’axe d’inclinaison de la terre. Si la terre ne tournait pas sur un axe incliné, les notions de cercle polaire et de tropique n’existeraient pas.
- Cercle polaire : Latitude à partir de laquelle, il y aura au moins un jour par an durant lequel le soleil ne se lève pas, ou ne se couche pas. Cela se produit lors des solstices d’été et d’hiver.
- Tropique : Latitude à partir de laquelle, le soleil peut passer au moins un jour par an, à un zénith de 90°, c’est à dire qu’il n’y a pas d’ombre à midi car le soleil se trouve exactement à la verticale du sol. Cela se produit le jour de l’équinoxe.
L’axe moyen de la terre est donc de 23,45°, il oscille suivant plusieurs cycles, et voici un outils qui vous permet de connaitre l’angle d’inclinaison selon l’époque concernée : http://www.neoprogrammics.com/obliquity_of_the_ecliptic/
Ce petit outil peut permettre de faire des datations, car selon la période à laquelle une construction à été faite, la position du cercle polaire change. Un internaute aussi curieux de ce sujet, Amarillo Salvaje, me faisait remarquer, que le cercle polaire se situe en moyenne à 2617,8 km… (vous reconnaissez le nombre d’or au carré exprimé en milliers de km : 2,618)
Le cercle polaire correspond à un phénomène astronomique visible depuis la terre, il s’agit de la latitude à partir de laquelle, le soleil ne se couche pas ou ne se lève pas au moins un jour par an. C’est juste au dessus de la latitude de l’Islande.
Faut il voir dans cette distance de 2618 km, une relation avec le nombre d’or au carré (2,618) exprimé en millier de kilomètres, ou en coudée royale, car cela fait 5 millions de coudées royales ? Cela me semble possible au vu des connaissances géodésiques et astronomiques des anciens. Cela me semble, tout simplement évident, dès lors que l’on mesure la distance entre les tropiques et les pôles, puisque cette distance va nous délivrer un second indice. La distance entre les tropiques et les pôles est de 7408 km, soit la valeur de la double Coudée Rémen Égyptienne (10 millions de coudées Rémen) qui mesure, rappelons le : 52,36 x √2 : 74,08 ± 0,03.
Les tropiques se trouvent à 7408 km, soit 10 000 000 de doubles coudées Rémen Égyptienne.
On peut aussi constater que la distance entre les tropiques et les pôles est de 4000 miles nautiques. Il s’agit d’une curieuse observation, car le mile nautique, c’est le méridien divisé par 360° et 60 minutes d’arc, soit 1852,21 mètres. Il me semble évident que les anciens qui ont déterminés la valeur de la Coudée Royale l’ont fait en tenant compte de ces paramètres astro-géodésique de la terre. La question qui demeure, c’est de savoir si la valeur moyenne de l’axe d’inclinaison de la terre est bien de 23,45°. Cet axe correspond à la valeur actuelle en 1917 d’après les publications de Laskar (1985). Nous sommes presque au milieu du cycle de 41000 ans pendant lequel cet axe évolue. Ce qui laisse penser que les anciens avaient compris que l’axe de la terre change et qu’ils en connaissaient la valeur moyenne avec une précision moderne.
Sincèrement, il semble impossible, que par hasard la distance du Pôle Nord jusqu’au cercle polaire se trouve à une distance qui s’exprime en kilomètres et en Coudée royale, puis en Coudée Rémen et en mile nautique pour le tropique. Ces faits étonnant viennent éclairer de façon soudaine et évidente l’origine “astro-géométrique et géo-métrologique” de la coudée royale Égyptienne.
Et le yard mégalithique la dedans ?
Comme vous le savez si vous me lisez, j’ai rappelé à plusieurs reprise que le métrologiste historique R Rottlander a démontré que la toise mégalithique (207,36 cm) mesure 4 coudées de Nippur (4 x 51,84 cm) et que cette relation implique que ces deux unités sont en fait issue de la même mesure subdivisée de manière différente.
La coudée de Nippur étant liée à la coudée royale égyptienne et à la géodésie de la terre, on peut raisonnablement se poser la question de la présence du yard mégalithique dans les relations astro-géométriques et géo-métrologiques que nous venons d’énoncer.
En effet, l’écart de distance entre le cercle polaire et le tropique est de 4789,8 km. Ici la relation saute beaucoup moins aux yeux, mais elle existe pourtant. Cette mesure est liée à un tracé géométrique simple à partir d’un carré et d’un compas. La relation entre cette mesure est la même qu’entre la racine de 3 et le yard mégalithique.
La coudée de Nippur
Elle mesure 51,84 cm, et pour clôturer ce système la distance entre les deux tropiques du Cancer et du Capricorne est de 5188 km, doit 10 000 000 de coudées de Nippur à 99,9% de précision.
Un système de mesure parfait est impossible, mais nous pouvons estimer celui ci à 99,967% de précision, ce qui compte tenu de la difficulté que représente la mesure de la taille de la terre est tout à fait acceptable.
Pour conclure.
Bref, que dire de plus ? Si ne n’est nous émerveiller de la pensée subtile d’un peuple ancien désireux d’harmoniser la mesure avec des principes primordiaux liée à la mesure de la terre et à ses caractéristiques astronomique, ainsi qu’a des principes géométriques fondamentaux que sont le carré et le cercle par exemple.
A l’avenir, lorsque vous manipulerez une coudée royale, vous aurez la joie d’en connaitre l’origine, et avouez que cela est bien plus fin et que le concept abstrait qui consiste à donner une mesure arbitraire au mètre comme l’envisageait les premiers savants de l’ère moderne. Ceci dit, le mètre, réintroduit au 19ème siècle, repose aussi sur des principes fins, mais j’y reviendrais une autre fois.
Annexe à propos de l’inclinaison de l’axe de la terre.
http://www.neoprogrammics.com/obliquity_of_the_ecliptic/
-
La position de la Terre par rapport au Soleil change en permanence en fonction de trois paramètres : l’excentricité de l’orbite terrestre qui varie entre 0,005 et 0,05 sur une période de 100 000 ans. Actuellement elle est d’environ 0,016 ;
-
l’inclinaison de la Terre qui varie entre 22° et 25°, par rapport au plan de l’écliptique, sur une période de 41 000 ans. Actuellement l’inclinaison de la Terre est de l’ordre de 23,5° ;
-
la précession des équinoxes qui entraîne un mouvement de l’axe de rotation de la Terre sur un cône de révolution au cours d’une période de 26 000 ans.
L’excentricité et l’inclinaison de la terre participent à modifier l’azimut des levers de soleil lors des Solstices, alors que le cycle de précessions des Équinoxes n’a quant à lui aucune influence sur la position du lever solaire solsticiale. La précession, c’est le cône qui se déplace sans changer l’axe de l’inclinaison, cela ne modifie que la position des étoiles pour nous.
La variation de ces paramètres orbitaux modifie sans cesse la position et l’exposition de la Terre par rapport au Soleil. Ces variations sont faibles. Elles sont pourtant suffisantes pour modifier la part de l’énergie solaire qui arrive sur Terre. Ces changements sont à l’origine de la théorie qui permet d’expliquer les grands changements climatiques que l’on observe depuis deux millions d’années sur notre planète. C’est la théorie astronomique de Milankovitch. Les petites variations orbitales entraînent de grands cycles climatiques sur des périodes de 100 000 ans. On observe une série de longues périodes glaciaires, suivies par des périodes interglaciaires plus courtes (durée de 10 000 à 20 000 ans), mais aussi plus chaudes. La différence de température moyenne entre ces périodes est de l’ordre de 5°C sur la planète. La période interglaciaire dans laquelle nous vivons a débuté il y a 11 000 ans. Elle pourrait durer encore plusieurs dizaines de milliers d’années.
Remerciement à Amarillo Salvaje qui m’a parlé de la relation entre le cercle polaire et le pôle, et qui m’a ensuite permis de découvrir la relation métrologique avec le tropique qui vient enfoncer le clou.
Référence pour la valeur moyenne de l’axe de la terre :
Bonjour, j’ai visionné avec intérêt pas mal de vidéos qui sont sur votre site. Je suis d’accord avec de nombreuses idées que vous présentez.
Je vient de lire le livre de Christine Proust issu de sa thèse (Tablettes mathématiques de Nippur : reconstitution du cursus scolaire (début du deuxième millénaire avant J. C.) publié en 2007. Tout d’abord ces tablettes sont bien écrites en sumérien comme la tablette des hypoténuses Plinton 322. Elle précise que bien que ce peuple parlait a cet époque l’akkadien, les textes mathématiques continuaient d’être écrits en sumérien jusqu’au 2ieme millénaire avant JC.
J’ai remarqué que les scribes sumériens calculaient les surfaces comme toi ! En effet, il s’avère qu’il découpaient les surfaces en suite de carrés unitaires (ou d’un nombre entier d’unité) et ensuite ils appliquaient un facteur d’échelle. De même pour les volumes d’ailleurs.
Ils distinguaient les nombres concrets ( mesures avec des bâtons, des cordes) des nombres abstraits. Ces nombres sont exprimés avec des entiers et des fractions entières. Les calculs ne sont effectués que sur les nombres abstraits en base 60 grâce aux tables et à des « recettes ». Des tables de conversion permettent de passer de l’un à l’autre avec des arrondis, ce qui ne colle pas avec ton désir de précision (à mon avis un peu extrême).
Ces tablettes sont les restes (brouillons) d’élèves scribes, constituées de tables métrologiques et de tables de multiplication, division, carrés et cubes ainsi que d’exercices de calculs niveau minimum fin de collège en base 10 mais eux le faisaient en base 60! (factorisation, décomposition en nombre premiers). Tout cela pour calculer la surface de champs, les volumes de briques,de navires …
Une idée aussi qui me semble intéressante c’est qu’elle note qu’il n’y a jamais de traces de démonstration. Ces connaissances semble être un « reste »de connaissance plus anciennes et plus complètes. Plusieurs éléments l’amène a dire cela.
Je veux pas être trop long ; on peut en discuter …
Amicalement Michel
Vous interprétez trop vite en clamant qu’il s’agit là “de l’origine”, alors qu’il peut tout à fait s’agir d’une corrélation due à une mauvaise compréhension de l’univers !
En effet si on se place dans un référentiel où l’on pose que la Terre est un disque plat et que c’est le soleil qui en parcourt un arc de cercle du lever au coucher, que l’on interprète les ombres au sol selon cette hypothèse pour établir la longueur de ce cercle, alors on démontre tout aussi bien que la coudée royale est la 1/12 000 000 de l’arc de cercle parcouru par le Dieu Soleil, et ça fonctionne tout aussi bien.
Alors pourquoi partez vous du principe où le référentiel fondamental est le nôtre quant il pourrait être tout autre pour aboutir à un même résultat ?
Vous n’avez pas d’éléments pour établir le référentiel où le calcul correspond à l’hypothèse, donc pourquoi donc laisser supposer qu’il eût été le même ?
Humm… article qui reprend beaucoup d’éléments du travail de Fabien Pardo… https://www.poureuxlelivre.fr/articles-de-fabien-pardo/la-coud%C3%A9e-royale/
Pourquoi montres tu phi² au lieu simplement de la coudée royale qui est le sujet de l’article ? Grâce a la relation 2phi² = coudée royale, tu masques la copie et dévoile le plagiat… Tout cela est bien triste… J’espère que je me trompe et espère que tu rendras l’antériorité à Fabien Pardo en tout cas j’attend une réponse. (capture d’écran du commentaire au cas où…)
Bonjour, la première personne à ma connaissance à avoir signalé la distance de 2618 km entre le cercle polaire et le pole est Johnatan Alvarez sur un forum… il m’a signalé cette information afin de creuser un peu plus loin, et de publier cette observation.
Voilà ce que je sais de cette observation.
Ensuite, j’ai développé le reste des idées à propos de tropiques, et du yard mégalithiques qui est un mesure indissociable de la coudée royale égyptienne.
3481*1,376 = 4789,856 soit une précision de 99,9988%
la grosse pierre de l’entrée du tombeau du roi de la pyramide de kheops mesure 2,402m par 1,344 m . ce qui donnera une diagonale de 2,752442 m soit 2*1,376. ( car 1,376 est un rapport doré).
Nébi de Licht sur Nuréa
BJ Quentin,
fractals découlent du nombre d’or, fleurs vie, géométrie sacrée, intervalles axes orbitaux, saut quantique, distances autres astres système S idems, ligne de temps … Méridien de Paris … … …
Bonsoir.