LES PRINCIPALES UNITÉS DE MESURES ANCIENNES ET LEURS SECRETS.

Entre la Coudée Royale (CR), la Coudée de Nippur (CN), le Pied Romain (PR), le Yard Mégalithique (YM), on s’y perd ! Je vous propose une petite synthèse de toutes ces mesures anciennes qui sont d’une importance capitale pour comprendre les connaissances insoupçonnées des anciennes civilisations. Ces unités sont comme des clefs qui vous permettent de découvrir les nombres inscrits dans l’architecture et l’univers. En mesurant par exemple la grande pyramide avec telle ou telle unité, les nombres qui en découlent nous donnent des informations.

Les principales unités de mesure anciennes.

Unité de mesureLongueurOrigine théorique et datation
Yard Mégalithique (YM)82,944 cm (Toise 2,0736 m)5000 av JC, Peuple mégalithique
Coudée de Nippur (CN)51,84 cm (pied 27,648 cm)3500 av JC, Sumérien
Coudée Royale (CR)52,36 cm (pied 29,92 cm)3000 av JC, Égypte, Khéops
Double Coudée Rémen74,05 cm (diagonale d’un carré qui vaut 1 CR)3000 av JC, Égypte
La Coudée Nilométrique (CNil53,93 cm3000 av JC, Égypte, Khéphren.
Coudée de Gudéa (CG)49,77 cm2000 av JC, Sumérien
Coudée Punique (CP)51,5 cm500 av JC, Phénicien
Coudée de Tiwanaku (CT)44,72 cm1000 ap JC, Inca
Pied Impérial (IF)30,48 cm, (Yard 91,44 cm)1000 ap JC, Grande Bretagne
Pied Romain (PR)29,62 cm300 av JC, Empire Romain
Pied Grec (PG)30,87 cm500 av JC, Grèce.
Yard de Barabar (YB)85,41 cm (doigt de 1,778 cm, appelé “angula”)300 av Jc, Inde
Le mètre (M)100 cm1798, France, Académie des Sciences
Synthèse des principales mesures, qui en apparence n’ont aucun rapport.

Comme vous vous en doutez, si vous me lisez régulièrement, toutes ces unités de mesures font en réalité partie d’un seul et même corps de connaissance ancienne. Ces unités n’ont pas été étalonnées sur la taille d’un hypothétique pied de roi. J’ai expliqué dans un article en quoi cette rumeur n’est pas solide.

Voyons de manière synthétique, en quoi ces mesures sont interconnectés par des principes simples. Ces principes simples peuvent être les suivants :

  • Des rapports en nombres entiers. (par exemple 1/3)
  • Des rapports géométriques (par exemple le coté et la diagonale d’un carré).
  • Des relations numériques reposant sur des nombres irrationnels, pouvant aussi être obtenue avec un tracé géométrique.
  • Des rapports avec la taille de la terre, et ses caractéristiques spatio-temporelle.
  • Et enfin, des rapports “symboliques” avec les proportions et la taille de l’humain.

Le yard mégalithique, la toise mégalithique, et le pied romain.

Une Toise MégalithiqueUn Yard Mégalithique=207,3682,944=2,5        Une Toise MégalithiqueUne Coudée de Nippur=207,3651,84= 4    Une Toise MégalithiqueUn Pied Romain=207,3629,62= 7

Étonnant n’est ce pas, ces 3 unités de mesures, qui n’ont à priori aucun rapport, le Pied Romain, le Yard Mégalithique et la Coudée de Nippur semblent interconnectés par des rapports simples en nombre entier. Regardons un peu les autres unités, et voyons quels rapports simples on peut déduire de ces unités.

La coudée de Gudéa, la coudée de Nippur, la coudée Nilométrique et la toise mégalithique.

Le rapport est assez simple, ces 3 coudées sont reliées par 1/100ème de toise mégalithique, c’est à dire que 2,0736 cm séparent les 3 coudées.

49,77 + 2,0736 51,84, puis nous avons : 51,84 + 2,0736 53,93

Le niveau de précision est de 99,97 %, et lorsque l’on sait que les coudées de Nippur et de Gudéa sont issue de la même civilisation Sumérienne, on peut s’attendre à trouver un pont entre les deux. Ce qui est surprenant c’est que ce pont passe par la toise mégalithique. Ceci fut découvert par le métrologiste Allemand Rottlander (référence ci dessous). Mais le lien avec la coudée Nilométrique et le Yard Mégalithique aura échappé à la plupart des observateurs.

La Coudée Royale, la Coudée de Nippur, et le Pied Romain.

Introduisons maintenant la Coudée Royale Égyptienne (52,36 cm). Le rapport avec la coudée de Nippur (51,84 cm) est simple. Il faut retirer 1/100ème à la Coudée Royale pour obtenir la Coudée de Nippur. Et il faut aussi retirer 1/100ème au Pied Royal Égyptien (29,92 cm) pour obtenir le Pied Romain (29,62 cm). Le rapport entre le Pied et la Coudée est de 4/7.

52,360,523651,84 cm, puis avec le Pied Royal, 29,920,299229,62 cm

L’usage d’un centième (1/100) pour passer d’une mesure à une autre est récurrente comme vous venez de le voir avec l’exemple de la Coudée de Gudéa, la Coudée de Nippur, la Coudée Royale, la Coudée Nilométrique et la Toise Mégalithique. Mais en quoi ce rapport de 1/100 est intéressant ? La réponse est simple. Il y a un rapport géodésique de 99 à 100 entre le degrés de méridien à l’équateur et aux pôles.

1° de méridien à léquateur1° de méridien aux pôles=110,574 km111,694 km=99100

Il faut aussi noter qu’il existe un rapport numérique de 99/70 (donc (100-1)/70 ) qui est une excellente approximation du rapport entre le coté et la diagonale d’un carré. Le rapport entre le coté d’un carré et sa diagonale est 1 sur racine de 2.

2=1,414213562....100170=9970=1,4142857

Existe t’il une figure géométrique qui permet de relier la Coudée Royale, la Coudée de Nippur, mais aussi le rapport de 99 à 100 ainsi que le rapport du coté d’un carré et sa diagonale ? La réponse est oui.

Il s’agit donc d’un ensemble de 7 carrés, que nous appelons “septuple carré” et dont le rapport entre le coté long et la diagonale est un rapport de 99 à 100 unités. Si l’on place 10 Coudées de Nippur sur le coté 7 du septuple carré, alors sa diagonale mesure 10 Coudées Royale. Mais en plus de cela, la diagonale de chacun des carrés mesures 2 Coudées Royales Égyptiennes. Cette figure démontre là, encore que les anciens Egyptiens ont entretenus des relations scientifiques avec les peuples Sumériens.

Cette figure géométrique est employée notamment dans certains ensembles géométriques. J’ai évoqué cela dans le documentaire sur les Mégalithes du Plateau de Cauria avec un double alignement de menhirs orientés suivant ce principe.

Regardons du coté du Pied Romain et du Pied Grec.

Ces deux mesures, que sont le Pied Grec de 30,87 cm et le Pied Romain de 29,62 cm, sont fascinant aussi. Ils entretiennent un rapport de 24 à 25. Ce rapport est intéressant, car il permet à l’aide d’un triangle de Pythagore de retrouver ces deux unités de mesure. Le triangle de Pythagore en nombre entier de 7 unités, 24 unités et 25 unités permet de passer d’une mesure à l’autre. Voyons cela en image.

Cet exemple avec le triangle 7, 24, 25 est fascinant, car il introduit déjà une relation étonnante avec le mètre sur le coté 7. En effet, 8,64 en centimètre représentent numériquement un nombre important pour les anciens qui avaient déjà réalisé une division du temps en 24 heures, 60 minutes et 60 secondes…. soit 86400 secondes par jour.

On peut observer aussi une autre relation simple avec le nombre 86400, le mètre et la coudée de Nippur.

Il est possible d’appuyer encore un peu plus pour démontrer la pertinence de ce triangle 7, 24, 25 dans le rapport qu’il permet de faire entre le mètre, le yard mégalithique et le nombre 86400. Cette proposition est de Thierry Maho et Howard Crowhurst.

Nous pouvons aller encore plus loin, puisque je vous propose avec ce même triangle de Pythagore, le 7, 24, 25, et un simple carré, de passer de la coudée Royale Égyptienne, au Pied Romain et à la Toise Mégalithique. L’illustration ci dessous vaut mieux qu’un long discours.

Et le mètre, dans tout cela… ?

Vous avez déjà pu voir quelques liens entre le mètre et les unités de mesure ancienne. Le mètre est en réalité une unité de mesure qui sert à faire apparaitre des nombres qui ont un sens, ou qui sont des références d’ordres scientifiques, comme le nombre de seconde dans une journée (86400). Le mètre permet aussi d’exprimer des nombres irrationnels ou des constantes mathématiques comme le nombre PI, le nombre d’or, ou des racines carrées. Voyons quelques exemples simples qui décoiffent et dépoussières les consensus modernes.

Unités de mesuresValeur en mètreLien avec le mètre et les nombres importants.
Coudée Nilométrique53,93 cm1/3 du nombre d’or. 1,618 m / 3 = 0,5393 m
Coudée de Tiwanaku44,72 cm (1/2 coudée = 22,36 cm)1 mètre divisé par √5 = 0,4472 m
√5 = 2,236 = 44,72 / 20
20√5 = 44,72
Coudée Royale52,36 cm1/6ème de PI. π / 6 = 3,1416 / 6 = 0,5236
1/5ème du nombre d’or au carré. φ2 / 5 = 2,618 / 5 = 0,5236
Coudée Punique51,5 cmUn cercle de diamètre 1 Coudée Punique a un périmètre de 1,618 mètre, soit le nombre d’or. 0,515 x π = 1,618

Et le lien entre ces unités de mesures et la taille de la terre ?

Bien sur, toutes ces unités ont pour la plupart une relation simple avec la taille de la terre. Elles furent étalonnées en fonction de la taille de la circonférence de la terre à différentes latitudes. Les unités de mesures romaines par exemples sont les plus simples à comprendre. Toute ces unités sont basées sur le Pied Romain de 29,62 cm, qui lui même est divisé en 16 doigts de 1,852 cm.

Avant de détailler les relations entre les mesures romaines et la taille de la terre il convient de rappeler quelques notions.

  • Méridien : Ligne de de circonférence de la terre en passant par les pôles nord et sud, il mesure 40007,863 km.
  • Équateur : Ligne de circonférence de la terre d’Est en Ouest, il mesure 40075,017 km.
  • Degrés de méridien : Circonférence d’un méridien divisée en 360°, soit 40007,863 / 360 = 111,133 km.
  • Minute d’arc de méridien : Division d’un degrés de méridien en 60 parties que nous appelons minute d’arc. 111,133 / 60 = 1,852 mètres.
  • Seconde d’arc de méridien : Division d’une minute d’arc en 60 parties que nous appelons seconde d’arc. 1,852 / 60 = 30,87 mètres.
  • Tierce de degrés d’arc : Division en 60 parties d’une seconde d’arc, que nous appelons tierce de degrés d’arc, car cela revient à diviser le degrés de méridien par 60 à 3 reprises : 111,133 / 60 / 60 / 60 = 0,515 mètres. (cette longueur est exactement celle de la Coudée Punique).
UnitésMesuresRelation avec la taille de la terre.
Doigt1,852 cmUnité de base qui vaut 1/100 000ème d’une minute d’arc du méridien.
Paume7,408 cm1/4 de Pied Romain et 4 doigts de 1,852 cm, soit 1/25000ème d’une minute d’arc du méridien.
Pieds Romain 29,62 cm625 pieds = 1852 mètres, soit une minute d’arc du méridien.
Stade Romain185,2 m1 minute d’arc du méridien, 1/60ème du degrés de méridien, 1/21600ème du méridien de la terre.
Lieue Romain1481 m5000 Pieds Romain, 1/75ème du degrés de Méridien
Mile Romain2222 m7500 Pieds Romain, 1/50ème du degrés de méridien.

Comme vous pouvez le constater, le lien entre les mesures romaines et la division de la taille de la terre en degrés, minute, seconde est évidente. Comme nous avons démontré qu’il y a un lien entre les mesures romaines, le Yard Mégalithique, et la Coudée Royale Égyptienne, vous comprenez dès lors que toutes ces unités de mesures anciennes ont pour étalon de référence la taille de la terre. Et que l’idée d’étalonner le mètre sur la taille de la terre lors de la période de la révolution Française n’est pas nouvelle du tout.

Mais alors, c’est quoi cette histoire de coudée étalonnée sur le corps humain ?

C’est assez simple à comprendre, les anciens ont eut la nécessité de donner un nom à leurs unités de mesure et de les relier symboliquement à quelques choses de concrets qui nous permet de comprendre tout de suite l’ordre de grandeur des unités dont on parle. Ainsi, de manière assez spontanée, les mesure entre 40 et 60 cm furent appelées des coudées, et celle entre 25 et 35 cm, des pieds. Puis ces mesures furent subdivisées en nombres simples, important pour les anciens, et toujours en rapport avec la taille du corps. La coudée est divisée en 5, 6, ou 7 paumes ou palmes, et chaque paumes est divisée en 4 doigts ou 3 pouces. Ainsi, les mesures présentaient des caractères concrets, facilement perceptibles et utilisable par les humains. Puis nous avons oublié que ces mesures furent pensée entre autre en fonction de la taille de la terre. Je dit bien entre autres, car en réalité d’autres paramètres d’ordre astronomique ont été pris en compte dans une sorte de synthèse de connaissance époustouflante que je tente de décrire et redécouvrir ici.

Ce qui induit en erreur les historiens et métrologistes classiques, c’est que les Egyptiens ont très bien représenté le lien entre les mesures et le corps humain dans leur architecture. Les Egyptiens avaient un sens de l’harmonie tout à faire remarquable.

John Legon a aussi montré que compte tenu des études sur 60 momies, la taille moyenne des Egyptiens est de 1,66 m ± 0,01, et qu’il faut 3 coudées royales pour remplir ces 18 carreaux, soit 1,57 m. Le rapport entre la hauteur d’un homme jusqu’à la racine des cheveux avec la taille totale est un rapport de 18 à 19.

Plusieurs auteurs ont détaillés les grilles de proportions du canon de proportion Egyptiens. Mark Inversen et John Legon représentent très bien ce travail. Leurs observations sont intéressantes. Car si la taille de l’Égyptien est de 3 coudées jusqu’à la racine des cheveux, et qu’il y a un rapport de 18 à 19 avec la hauteur totale, alors la hauteur totale vaut 1,659, soit 2 Yards Mégalithique.

3 × 0,523618 ×19=165,8 = 2 Yards Mégalithique

Bref, il y a bien un lien entre les mesures anciennes et les proportions du corps humain, mais il est d’ordre pratique et symbolique et n’a aucunement servi de référence pour étalonner les unités de mesures initialement pensées par nos lointains ancêtres.

Conclusion :

Cet article devrait vous permettre d’y voir un peu plus claire sur l’ensemble des unités de mesures dont je parle régulièrement. Les implications de ces unités sont fondamentales, j’ai expliqué en quoi le Coudée Royale est un véritable étalon astronomique et géodésique de la terre dans un article. J’ai suggéré aussi que le yard mégalithique est un étalon de l’espace et du temps à travers l’usage d’un simple pendule.

Un pendule d’un demi yard mégalithique bat 365,2422* fois pendant le temps qui sépare le temps solaire et le temps sidéral, avec une précision de 99,9976%. Cette relation métrologique et temporelle permet de relier la mesure et le temps.” (*365,2422 est la durée d’une année solaire en jour)

L’amour est la mesure du monde, chez les Sumériens, le pictogramme du mot “aimer” et du mot “mesure” est le même. Ne dit ont pas avoir de l’estime pour quelqu’un, ou encore, que l’on apprécie cette personne…. alors même que l’on peut estimer une distance, et apprécier une performance… La mesure est une clef…

Ne ratez plus nos publications,

close

10 Commentaires

  1. Est-ce que le 6 carres est un passage des 360 degres (6 carres x base 60) vers les 365 rotations de la terre avec la diagonale (V37) ?
    un passage entre la mesure de l’espace circulaire -une revolution terrestre- vers la mesure du temps calendaire 365 jours ?
    37 est un nombre particulier : 37×3=111 37×6=222 37×9=333 37×12=444 37×15=555 …

  2. Tout ce que j’ai toujours voulu savoir et que je n’ai jamais su demander.
    Quentin l’entraîneur qui conduit son peloton de tête sur la route du Graal !
    La mesure est une clef…de la démarche scientifique.
    La mesure est une clef…de l’unification des savoirs.
    Une des clefs nous parviendra-t-elle, aussi, de l’expression mathématique de l’univers holo-fractal unifiée, modèle défendu par resonancescience.org de N.Haramein qui prétend être « la mesure naturelle » ?

  3. Bonjour, merci pour cet excellent article ! Mais je suis étonné de ne pas voir apparaitre la pige médiévale dans vos UNITÉS DE MESURES ANCIENNES :
    (la paume : 7,64 cm – la palme : 12,36 cm – l’empan : 20 cm – le pied : 32,36 cm – la coudée : 52,36 cm).
    (où d’ailleurs le mètre faisait 5 empans);-)

    • Oui, je n’en ai pas parlé, car cette pige médiévale est plus récente…. mais aussi parce que j’ai prévu d’en parler plus tard dans un article pour montrer que les Egyptiens ont utilisé cette pige…. et qu’il existe bien en Égypte une règle graduée de cette pige.

  4. Le rapport 366 PHI / 360 PI donnant la coudée royale était probablement utilisé par les anciens car il permet de simplifier les calculs où figurent les constantes PHI et PI.

  5. La coudée royale présentée sous la forme 366 PHI / 360 PI possède une puissance de calcul importante:
    Le nombre 360 en dénominateur permet de multiplier par ses 22 diviseurs
    Ainsi, 366 PHI / 180 PI = 2 x 0,5236.

    Le nombre PI placé en dénominateur permet de multiplier par celui-ci si on le supprime
    et de passer du diamètre à la circonférence.

    Le nombre PHI placé en numérateur permet de diviser par celui-ci si on le supprime
    Ainsi, 366 / 360 PI = 0,3236 …… le pied

  6. La coudée royale de 0,5236 m peut s’exprimer par la fraction
    (864 x PHI puissance 4) / (3600 x PI)
    Remarquons 864 qui met la coudée en relation avec les 86 400 secondes du jour solaire.
    En variant les puissances de PHI, on obtient d’autres unités bien connues ( pied, empan, palme, paume ) qui sont, elles aussi, faciles à calculer grâce au dénominateur 3600 x PI

  7. Il semble que le rapport 366/377 donne une meilleure précision que le rapport 100/103 pour passer de la coudée nilométrique à la coudée royale.
    Ainsi: ( PHI / 3 ) x ( 366 / 377 ) = 0,523607…

  8. En divisant le degré d’arc du méridien par 60 une quatrième fois, on obtiens la quarte.
    111133/60/60/60/60 = 0,008575 m
    Voici quelques propriétés remarquables de la quarte
    366 quartes = PI
    233 quartes = 2 mètres (en fait 10 empans)
    La quarte est le diamètre du cercle dont la circonférence mesure un pouce de 0,02693 m
    qui, décliné avec la base 12, donne la ligne le pied et la double toise.
    Il semble que les mesures anciennes aient été en relation avec les dimensions de la terre.

Laisser un commentaire

Votre adresse de messagerie ne sera pas publiée.


*


Ce site utilise Akismet pour réduire les indésirables. En savoir plus sur comment les données de vos commentaires sont utilisées.